Abstract
Keywords
1. Introduction
- Mijnheer B.
- Beddar S.
- Izewska J.
- Reft C.
- Esposito M.
- Villaggi E.
- Bresciani S.
- Cilla S.
- Daniela Falco M.
- Garibaldi C.
- et al.
2. Methods and materials
2.1 IVD definition
2.2 Structure of task group report
3. Current IVD methods
3.1 Point detectors
- Beddar A.S.
- Mackie T.R.
- Attix F.H.
3.2 EPID dosimetry for IVD
Persoon LCGG, Podesta M, Nijsten SMJJG, Troost EGC, Verhaegen F. Time-Resolved Versus Integrated Transit Planar Dosimetry for Volumetric Modulated Arc Therapy: Patient-Specific Dose Differences During Treatment, a Proof of Principle. Technol Cancer Res Treat 2016;15:NP79-N87. doi: 10.1177/1533034615617668.
- Bedford J.L.
- Hanson I.M.
- Hansen V.N.
Persoon LCGG, Podesta M, Nijsten SMJJG, Troost EGC, Verhaegen F. Time-Resolved Versus Integrated Transit Planar Dosimetry for Volumetric Modulated Arc Therapy: Patient-Specific Dose Differences During Treatment, a Proof of Principle. Technol Cancer Res Treat 2016;15:NP79-N87. doi: 10.1177/1533034615617668.
3.2.1 Forward systems at the EPID level
- Chytyk-Praznik K.
- Vanuytven E.
- Vanbeek T.A.
- Greer P.B.
- McCurdy B.M.C.
Persoon LCGG, Podesta M, Nijsten SMJJG, Troost EGC, Verhaegen F. Time-Resolved Versus Integrated Transit Planar Dosimetry for Volumetric Modulated Arc Therapy: Patient-Specific Dose Differences During Treatment, a Proof of Principle. Technol Cancer Res Treat 2016;15:NP79-N87. doi: 10.1177/1533034615617668.
3.2.2 Back-projection systems within the patient: dose reconstructed within a patient model
System type | Comparison location | Prediction | Measured/EPID-reconstructed |
---|---|---|---|
Forward systems (EPID) | EPID plane | Predicted portal image. Grayscale values. | Measured portal image. Grayscale values. |
Forward systems (dose) | EPID plane | Predicted portal dose to water slab. | Measured portal dose to water slab. |
Back-projection systems (direct) | Within patient model | Treatment planning system. Dose in patient model. | Dose back-projection directly into patient model. |
Back-projection systems (indirect) | Within patient model | Treatment planning system. Dose in patient model. | Dose back-projection through patient to incident fluence. Calculate dose in patient model. |
4. Requirements for EPID-based IVD systems

5. Future directions for research, development and clinical practice
5.1 Uncertainties

5.2 Error detection
5.3 Specificity and sensitivity
5.4 Online systems
5.5 EPID technology
5.6 Other IVD systems
- Collins C.
- Kodra J.
- Yoon S.W.
- Coakley R.
- Adamovics J.
- Oldham M.
- Wang Y.-F.
- Liu K.
- Adamovics J.
- Wuu C.-S.
- Zhu T.C.
- Pogue B.W.
- Zhang R.
- Glaser A.
- Andreozzi J.M.
- Bruza P.
- Gladstone D.J.
- et al.
6. Discussion
Declaration of Competing Interest
Acknowledgments
Appendix A. Supplementary data
- Supplementary data
References
- In vivo dosimetry in external beam radiotherapy.Med Phys. 2013; 40070903https://doi.org/10.1118/1.4811216
- In vivo dosimetry in UK external beam radiotherapy: Current and future usage.Br J Radiol. 2017; 90: 1-14https://doi.org/10.1259/bjr.20160915
Miften M, Olch A, Mihailidis D, Moran J, Pawlicki T, Molineu A, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218. Med Phys 2018;45:e53-83. doi: 10.1002/mp.12810.
International Atomic Energy Agency. Development of Procedures for In Vivo Dosimetry in Radiotherapy. IAEA Human Health Report No. 8. Vienna: International Atomic Energy Agency; 2013. doi: 10.1016/0167-8140(90)90102-3.
- Estimating dose delivery accuracy in stereotactic body radiation therapy: a review of in-vivo measurement methods.Radiother Oncol. 2020; https://doi.org/10.1016/j.radonc.2020.05.014
- Transit and non-transit 3D EPID dosimetry versus detector arrays for patient specific QA.J Appl Clin Med Phys. 2019; 20: 79-90https://doi.org/10.1002/acm2.12610
- Overview of 3-year experience with large-scale electronic portal imaging device-based 3-dimensional transit dosimetry.Pract Radiat Oncol. 2015; 5: e679-e687https://doi.org/10.1016/j.prro.2015.07.001
- EPID based in vivo dosimetry system: clinical experience and results.J Appl Clin Med Phys. 2016; 17: 262-276https://doi.org/10.1120/jacmp.v17i3.6070
- Routine EPID in-vivo dosimetry in a reference point for conformal radiotherapy treatments.Phys Med Biol. 2015; 60: N141-N150https://doi.org/10.1088/0031-9155/60/8/N141
- In vivo dosimetry for lung radiotherapy including SBRT.Phys Medica. 2017; 44: 123-130https://doi.org/10.1016/j.ejmp.2017.05.065
- A literature review of electronic portal imaging for radiotherapy dosimetry.Radiother Oncol. 2008; 88: 289-309https://doi.org/10.1016/j.radonc.2008.07.008
- Electronic portal imaging device dosimetry.in: Mijnheer B. Clinical 3D dosimetry in modern radiation therapy. CRC Press, Boca Raton, FL2017: 169-198
- In vivo dosimetry with optically stimulated luminescent dosimeters, OSLDs, compared to diodes; The effects of buildup cap thickness and fabrication material.Med Phys. 2011; 38: 5432-5440https://doi.org/10.1118/1.3633939
- Toward a real-time in vivo dosimetry system using plastic scintillation detectors.Int J Radiat Oncol Biol Phys. 2010; 78: 280-287https://doi.org/10.1016/j.ijrobp.2009.11.025
- Real-time in vivo rectal wall dosimetry using plastic scintillation detectors for patients with prostate cancer.Phys Med Biol. 2014; 59: 647-660https://doi.org/10.1088/0031-9155/59/3/647
- Comparison study of MOSFET detectors and diodes for entrance in vivo dosimetry in 18 MV x-ray beams.Med Phys. 2004; 31: 2534-2542https://doi.org/10.1118/1.1785452
- Review of plastic and liquid scintillation dosimetry for photon, electron, and proton therapy.Phys Med Biol. 2016; 61: R305-R343https://doi.org/10.1088/0031-9155/61/20/R305
- Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements.Phys Med Biol. 1992; 37: 1901-1913https://doi.org/10.1088/0031-9155/37/10/007
- Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical considerations.Phys Med Biol. 1992; 37https://doi.org/10.1088/0031-9155/37/10/006
Huyskens D, Bogaerts R, Verstraete J, Lööf M, Nyström H et al. Practical Guidelines for the Implementation of In Vivo Dosimetry with Diodes in External Radiotherapy with Photon Beams (Entrance Dose). ESTRO Booklet No. 5. Brussels: European Society for Radiotherapy and Oncology; 2001.
Costa A, Lisbona A, Noel A. Guide pour la mise en œuvre en radiothérapie externe de l’assurance de qualité par mesures in vivo par dosimètres thermoluminescents et semi-conducteurs. Rapport SFPM no. 18-2000. Paris: Société Française de Physique Médicale; 2000:5-26.
- Quality assurance by systematic in vivo dosimetry: Results on a large cohort of patients.Radiother Oncol. 2000; 56: 85-95https://doi.org/10.1016/S0167-8140(00)00195-X
- Errors in radiation oncology: a study in pathways and dosimetric impact.J Appl Clin Med Phys. 2005; 6: 81-94https://doi.org/10.1120/jacmp.v6i3.2105
Van Dam J, Marinello G. Methods for in Vivo Dosimetry in External Radiotherapy. ESTRO Booklet No. 1, First edition: 1994 Second edition: 2006. Brussels: European Society for Radiotherapy and Oncology; 2006.
- Investigation of the use of MOSFET for clinical IMRT dosimetric verification.Med Phys. 2002; 29: 1109-1115https://doi.org/10.1118/1.1481520
- A practical approach to diode based in vivo dosimetry for intensity modulated radiotherapy.Radiother Oncol. 2011; 98: 378-381https://doi.org/10.1016/j.radonc.2010.12.018
- Dosimetric impact of placement errors in optically stimulated luminescent in vivo dosimetry in radiotherapy.Phys Imag Radiat Oncol. 2019; 11: 63-68https://doi.org/10.1016/j.phro.2019.08.004
- Implantable MOSFET detectors: evaluation of a new design.Med Phys. 2007; 34: 4585-4590https://doi.org/10.1118/1.2799578
- Technical evaluation of radiation dose delivered in prostate cancer patients as measured by an implantable MOSFET dosimeter.Int J Radiat Oncol Biol Phys. 2007; 69: 925-935https://doi.org/10.1016/j.ijrobp.2007.06.065
- Management of radiotherapy patients with implanted cardiac pacemakers and defibrillators: a report of the AAPM TG-203.Med Phys. 2019; 46: e757-e788https://doi.org/10.1002/mp.13838
- Thermoluminescence dosimetry applied to in vivo dose measurements for total body irradiation techniques.Radiother Oncol. 1998; 47: 319-324https://doi.org/10.1016/S0167-8140(98)00013-9
- Midplane dose determination during total body irradiation using in vivo dosimetry.Radiother Oncol. 1998; 49: 91-98https://doi.org/10.1016/S0167-8140(98)00094-2
- Setup verification and in vivo dosimetry during intraoperative radiation therapy (IORT) for prostate cancer.Med Phys. 2007; 34: 3205-3210https://doi.org/10.1118/1.2750965
- Total body irradiation, toward optimal individual delivery: dose evaluation with metal oxide field effect transistors, thermoluminescence detectors, and a treatment planning system.Int J Radiat Oncol Biol Phys. 2007; 69: 1297-1304https://doi.org/10.1016/j.ijrobp.2007.07.2334
- Feasibility study of entrance in vivo dose measurements with mailed thermoluminescence detectors.Radiother Oncol. 2004; 73: 89-96https://doi.org/10.1016/j.radonc.2004.07.021
- Dosimetric properties of an amorphous silicon electronic portal imaging device for verification of dynamic intensity modulated radiation therapy.Med Phys. 2003; 30: 1618-1627https://doi.org/10.1118/1.1582469
- Dose-response and ghosting effects of an amorphous silicon electronic portal imaging device.Med Phys. 2004; 31: 285-295https://doi.org/10.1118/1.1637969
- Implementation and validation of portal dosimetry with an amorphous silicon EPID in the energy range from 6 to 25 MV.Phys Med Biol. 2007; 52: N355-N365https://doi.org/10.1088/0031-9155/52/15/N05
- Correction of pixel sensitivity variation and off-axis response for amorphous silicon EPID dosimetry.Med Phys. 2005; 32: 3558-3568https://doi.org/10.1118/1.2128498
- A model-based 3D patient-specific pre-treatment QA method for VMAT using the EPID.Phys Med Biol. 2017; 62: 1600-1612https://doi.org/10.1088/1361-6560/aa590a
- Portal dosimetry for VMAT using integrated images obtained during treatment.Med Phys. 2014; 41: 021725-21814https://doi.org/10.1118/1.4862515
- A simple backprojection algorithm for 3D in vivo EPID dosimetry of IMRT treatments.Med Phys. 2009; 36: 3310-3321https://doi.org/10.1118/1.3148482
- 3D dosimetric verification of volumetric-modulated arc therapy by portal dosimetry.Radiother Oncol. 2010; 94: 181-187https://doi.org/10.1016/j.radonc.2009.12.020
Persoon LCGG, Podesta M, Nijsten SMJJG, Troost EGC, Verhaegen F. Time-Resolved Versus Integrated Transit Planar Dosimetry for Volumetric Modulated Arc Therapy: Patient-Specific Dose Differences During Treatment, a Proof of Principle. Technol Cancer Res Treat 2016;15:NP79-N87. doi: 10.1177/1533034615617668.
- 3D in vivo dosimetry using megavoltage cone-beam CT and EPID dosimetry.Int J Radiat Oncol Biol Phys. 2009; 73: 1580-1587https://doi.org/10.1016/j.ijrobp.2008.11.051
- Initial clinical experience performing patient treatment verification with an electronic portal imaging device transit dosimeter.Int J Radiat Oncol Biol Phys. 2014; 88: 204-209https://doi.org/10.1016/j.ijrobp.2013.09.045
- Validation of a method for in vivo 3D dose reconstruction for IMRT and VMAT treatments using on-treatment EPID images and a model-based forward-calculation algorithm.Med Phys. 2015; 42: 6945-6954https://doi.org/10.1118/1.4935199
- EPID-based in vivo dosimetry using Dosimetry CheckTM: Overview and clinical experience in a 5-yr study including breast, lung, prostate, and head and neck cancer patients.J Appl Clin Med Phys. 2019; 20: 6-16https://doi.org/10.1002/acm2.12441
- Comparison of forward- and back-projection in vivo EPID dosimetry for VMAT treatment of the prostate.Phys Med Biol. 2018; 63025008https://doi.org/10.1088/1361-6560/aa9c60
- Epid-based in vivo dose verification for lung stereotactic treatments delivered with multiple breath-hold segmented volumetric modulated arc therapy.J Appl Clin Med Phys. 2019; 20: 37-44https://doi.org/10.1002/acm2.12538
- First experience with real-time EPID-based delivery verification during IMRT and VMAT sessions.Int J Radiat Oncol Biol Phys. 2015; 93: 516-522https://doi.org/10.1016/j.ijrobp.2015.07.2271
- Online 3D EPID-based dose verification: proof of concept.Med Phys. 2016; 43: 3969-3974https://doi.org/10.1118/1.4952729
- Model-based prediction of portal dose images during patient treatment.Med Phys. 2013; 40031713https://doi.org/10.1118/1.4792203
- Dosimetric capabilities of the Iview GT portal imager using MCNP5 Monte Carlo simulations.Conf Proc IEEE Eng Med Biol Soc. 2009; 2009: 3743-3746https://doi.org/10.1109/IEMBS.2009.5334899
- A Monte Carlo calculation model of electronic portal imaging device for transit dosimetry through heterogeneous media.Med Phys. 2016; 43: 2242https://doi.org/10.1118/1.4945276
- A global calibration model for a-Si EPIDs used for transit dosimetry.Med Phys. 2007; 34: 3872-3884https://doi.org/10.1118/1.2776244
- Time dependent pre-treatment EPID dosimetry for standard and FFF VMAT.Phys Med Biol. 2014; 59: 4749-4768https://doi.org/10.1088/0031-9155/59/16/4749
- A novel time dependent gamma evaluation function for dynamic 2D and 3D dose distributions.Phys Med Biol. 2014; 59: 5973-5985https://doi.org/10.1088/0031-9155/59/20/5973
- 3D in vivo dose verification of entire hypo-fractionated IMRT treatments using an EPID and cone-beam CT.Radiother Oncol. 2008; 86: 35-42https://doi.org/10.1016/j.radonc.2007.11.010
- The effect of the choice of patient model on the performance of in vivo 3D EPID dosimetry to detect variations in patient position and anatomy.Med Phys. 2019; 47: 171-180https://doi.org/10.1002/mp.13893
- Accurate two-dimensional IMRT verification using a back-projection EPID dosimetry method.Med Phys. 2006; 33: 259-273https://doi.org/10.1118/1.2147744
- In aqua vivo EPID dosimetry.Med Phys. 2012; 39: 367-377https://doi.org/10.1118/1.3665709
- In vivo dosimetry with an electronic portal imaging device for prostate cancer radiotherapy with an endorectal balloon.Phys Imag Radiat Oncol. 2019; 12: 7-9https://doi.org/10.1016/j.phro.2019.10.002
- Application of a practical method for the isocenter point in vivo dosimetry by a transit signal.Phys Med Biol. 2007; 52: 5101-5117https://doi.org/10.1088/0031-9155/52/16/026
- In vivo dose verification from back projection of a transit dose measurement on the central axis of photon beams.Phys Medica. 2011; 27: 1-10https://doi.org/10.1016/j.ejmp.2010.06.002
- The next step in patient-specific QA: 3D dose verification of conformal and intensity-modulated RT based on EPID dosimetry and Monte Carlo dose calculations.Radiother Oncol. 2008; 86: 86-92https://doi.org/10.1016/j.radonc.2007.11.007
- Patient-specific dosimetry of conventional and intensity modulated radiation therapy using a novel full Monte Carlo phase space reconstruction method from electronic portal images.Phys Med Biol. 2007; 52: 2277-2299https://doi.org/10.1088/0031-9155/52/8/016
- Setup in a clinical workflow and results of in vivo dosimetry procedure in an overload radiation therapy department.Int J Radiat Oncol Biol Phys. 2017; 99: E736https://doi.org/10.1016/j.ijrobp.2017.06.2371
Olaciregui-Ruiz I, Rozendaal R, Mijnheer B, van Herk M, Mans a. Automatic in vivo portal dosimetry of all treatments. Phys Med Biol 2013;58:8253-64. doi: 10.1088/0031-9155/58/22/8253.
- A validation study of a dedicated software for an automated in vivo dosimetry control in radiotherapy.Med Biol Eng Comput. 2018; 56: 1939-1947https://doi.org/10.1007/s11517-018-1822-3
- Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system.Phys Med Biol. 2014; 59: N171-N179https://doi.org/10.1088/0031-9155/59/19/N171
- Feasibility of portal dosimetry for flattening filter-free radiotherapy.J Appl Clin Med Phys. 2016; 17: 112-120https://doi.org/10.1120/jacmp.v17i1.5686
- Commissioning and evaluation of an electronic portal imaging device-based in-vivo dosimetry software.Cureus. 2018; : 10https://doi.org/10.7759/cureus.2139
Karlsson M, Georg, D. Ahnesjö A. Nyholm T OJ. Independent Dose Calculations: Concepts and Models. ESTRO Booklet 10. Brussels: European Society for Radiotherapy and Oncology; 2010.
- Patient specific QA: in vivo 3D dose verification.in: Mijnheer B. Clinical 3D dosimetry in modern radiation therapy. CRC Press, Boca Raton, FL2017: 461-490
- A quantification of the effectiveness of EPID dosimetry and software-based plan verification systems in detecting incidents in radiotherapy.Med Phys. 2015; 42: 5363-5369
- ROC analysis in patient specific quality assurance.Med Phys. 2013; 40: 1-7https://doi.org/10.1118/1.4795757
- Quality control of VMAT synchronization using portal imaging.J Appl Clin Med Phys. 2015; 16: 284-297https://doi.org/10.1120/jacmp.v16i1.5238
- Error detection during VMAT delivery using EPID-based 3D transit dosimetry.Phys Medica. 2018; 54: 137-145https://doi.org/10.1016/j.ejmp.2018.10.005
- Sensitivity study of an automated system for daily patient QA using EPID exit dose images.J Appl Clin Med Phys. 2018; 19: 114-124https://doi.org/10.1002/jacm2.12303
- Establishing action threshold for change in patient anatomy using EPID gamma analysis and PTV coverage for head and neck radiotherapy treatment.Med Phys. 2018; 45: 3534-3545https://doi.org/10.1002/mp.13045
- Site-specific alert criteria to detect patient-related errors with 3D EPID transit dosimetry.Med Phys. 2019; 46: 45-55https://doi.org/10.1002/mp.13265
- Quantifying the performance of in vivo portal dosimetry in detecting four types of treatment parameter variations.Med Phys. 2015; 42: 6912-6918https://doi.org/10.1118/1.4935093
- Error detection in intensity-modulated radiation therapy quality assurance using radiomic analysis of gamma distributions.Int J Radiat Oncol Biol Phys. 2018; 102: 219-228https://doi.org/10.1016/j.ijrobp.2018.05.033
- Classification of changes occurring in lung patient during radiotherapy using relative γ analysis and hidden Markov models.Med Phys. 2017; 44: 5043-5050https://doi.org/10.1002/mp.12488
- Predicting gamma passing rates for portal dosimetry-based IMRT QA using machine learning.Med Phys. 2019; 46: 4666-4675https://doi.org/10.1002/mp.13752
- Consequences of the spectral response of an a-Si EPID and implications for dosimetric calibration.Med Phys. 2005; 32: 2649-2658https://doi.org/10.1118/1.1984335
- Dose calibration of EPIDs for segmented IMRT dosimetry.J Appl Clin Med Phys. 2014; 15: 103-118https://doi.org/10.1120/jacmp.v15i6.4895
- Characterization of a novel EPID designed for simultaneous imaging and dose verification in radiotherapy.Med Phys. 2013; 40: 1-11https://doi.org/10.1118/1.4816657
- Evaluation of an a-Si EPID in direct detection configuration as a water-equivalent dosimeter for transit dosimetry.Med Phys. 2010; 37: 1459-1467https://doi.org/10.1118/1.3327456
- Direct-detection EPID dosimetry: investigation of a potential clinical configuration for IMRT verification.Phys Med Biol. 2009; 54: 7151-7169https://doi.org/10.1088/0031-9155/54/23/008
- Feasibility study of a dual detector configuration concept for simultaneous megavoltage imaging and dose verification in radiotherapy.Med Phys. 2015; 42: 1753-1764https://doi.org/10.1118/1.4907966
Das IJ. Radiochromic Film: Role and Applications In Radiation Dosimetry. Boca Raton, FL: CRC Press;2017. doi: 10.1201/b20964.
- Preliminary investigation of a reusable radiochromic sheet for radiation dosimetry.J Phys Conf Ser. 2019; 1305012032https://doi.org/10.1088/1742-6596/1305/1/012032
- An Investigation of dosimetric accuracy of a novel PRESAGE radiochromic sheet and its clinical applications.J Phys Conf Ser. 2019; 1305012041https://doi.org/10.1088/1742-6596/1305/1/012041
- Cherenkov imaging of total skin electron irradiation (TSEI).J Phys Conf Ser. 2019; 1305012016https://doi.org/10.1088/1742-6596/1305/1/012016
- Cherenkov imaging in the potential roles of radiotherapy QA and delivery.J Phys Conf Ser. 2017; 847012046https://doi.org/10.1088/1742-6596/847/1/012046
- Treatment of a first patient with FLASH-radiotherapy.Radiother Oncol. 2019; 139: 18-22https://doi.org/10.1016/j.radonc.2019.06.019
- Dosimetric and preparation procedures for irradiating biological models with pulsed electron beam at ultra-high dose-rate.Radiother Oncol. 2019; 139: 34-39https://doi.org/10.1016/j.radonc.2019.05.004
- TH-C-J-6B-03: electron beam treatment verification using measured and Monte Carlo predicted portal images.Med Phys. 2005; 50: 4977-4994https://doi.org/10.1118/1.1998647
- Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator.Int J Radiat Oncol Biol Phys. 2017; 97: 195-203https://doi.org/10.1016/j.ijrobp.2016.09.018
- ESTRO ACROP: technology for precision small animal radiotherapy research: Optimal use and challenges.Radiother Oncol. 2018; 126: 471-478https://doi.org/10.1016/j.radonc.2017.11.016
- A combined dose calculation and verification method for a small animal precision irradiator based on onboard imaging.Med Phys. 2012; 39: 4155-4166https://doi.org/10.1118/1.4725710
- Kilovoltage transit and exit dosimetry for a small animal image-guided radiotherapy system using built-in EPID.Med Phys. 2018; 45: 4642-4651https://doi.org/10.1002/mp.13134
Parodi K. Dose verification of proton and carbon ion beam treatments. In: Mijnheer B, ed. Clinical 3D Dosimetry in Modern Radiation Therapy. Boca Raton, FL: CRC Press; 2017, p. 589-613.
Article info
Publication history
Footnotes
☆During the 1st ESTRO Physics Workshop celebrated in November 2017 in Glasgow, Scotland, a task group was created to stimulate the wider adoption of in vivo dosimetry for external beam photon radiotherapy. The members of this task group, authors of this report, were selected on the basis of their expertise to contribute relevant input to the area of study and their long-term experience in the clinical implementation of in vivo dosimetry systems.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy