Abstract
Background and purpose
Materials and methods
Results
Conclusion
Keywords
1. Introduction
2. Material and methods
2.1 Radiodensity characterisation

2.2 Monte Carlo simulations
- Kairn T.
- Crowe S.B.
- Charles P.H.
- Trapp J.V.
- 1.A homogeneous 40 × 40 × 40 cm3 phantom, consisting entirely of DePuy CMW 1 bone cement,
- 2.A homogeneous 40 × 40 × 40 cm3 phantom, consisting entirely of water,
- 3.A heterogeneous phantom, consisting of a 0.6 cm thick layer of water, above a 0.6 cm thick layer of DePuy CMW1 bone cement, above a 10 cm layer of water (to provide backscatter),
- 4.A heterogeneous phantom, consisting of a 0.6 cm thick layer of water, above a 0.6 cm thick layer of cortical bone (ρ = 1.85 g/cm3), above a 10 cm layer of water.
- Haeussinger F.B.
- Heinzel S.
- Hahn T.
- Schecklmann M.
- Ehlis A.C.
- Fallgatter A.J.
Ingredient | Molecular Formula | % composition by mass |
---|---|---|
Solid component (40 g) | ||
Gentamicin sulphate | C19H40N5O11S | 4.22 |
Polymethyl Methacrylate | C5O2H8 | 84.73 |
Benzoyl Peroxide | C14H10O4 | 1.95 |
Barium Sulphate | BaSO4 | 9.10 |
Liquid component (20 ml, 19 g) | ||
Methyl Methacrylate | C5H8O2 | 98.50 |
N,N-Dimethyl-p-toluidine | C9H13N | ≤1.50 |
Hydroquinone | C6H6O2 | <0.1 |
2.3 Treatment dose calculations
Case no. | Treatment site | Bone flap | Prescription (total dose (Gy)/no. fractions) | Volumes (cm3) | ||
---|---|---|---|---|---|---|
PTV | Flap | Overlap | ||||
1 | Frontal lobe | Present | 30/5 | 53.4 | 9.7 | 3.6 |
2 | Frontal lobe | Present | 40/15 | 268.4 | 16.0 | 5.9 |
3 | Frontal lobe | Present | 30/5 | 59.1 | 26.3 | 0.1 |
4 | Frontal sweat gland | Present | 60/30 | 70.0 | 16.5 | 16.5 |
5 | Lacrimal gland | Virtual | 50/20 | 8.8 | 2.2 | 0.9 |
6 | Meninges | Present | 54/30 | 23.0 | 17.6 | 4.3 |
7 | Scalp | Virtual | 50/20 | 34.5 | 11.1 | 4.3 |
8 | Scalp | Virtual | 60/30 | 195.2 | 33.4 | 13.6 |
9 | Scalp | Virtual | 60/30 | 175.2 | 57.0 | 6.3 |
10 | Scalp | Present | 66/33 | 149.1 | 41.3 | 36.1 |
Crowe SB, Kairn T, Middlebrook N, Hill B, Christie DRH, Knight RT, Kenny J, Langton CM, Trapp JV. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity-modulated and volumetric-modulated arc radiotherapy. J Med Radiat Sci 2013;60:131–8. https://onlinelibrary.wiley.com/doi/full/10.1002/jmrs.24.
3. Results
3.1 Radiological characterisation
Modality | Energy | ρ (g/cm3) | ρe/ρe,w |
---|---|---|---|
kV CT | 120 kVp | 1.78 ± 0.04 | 1.66 ± 0.03 |
MV CT | 3.5 MV | 1.06 ± 0.04 | 1.04 ± 0.03 |
Linac with ionisation chamber | 6 MV | – | 1.02 ± 0.08 |
Linac with EPID | 6 MV | – | 1.08 ± 0.10 |
3.2 Monte Carlo simulations

3.3 Treatment dose calculations

4. Discussion
Declaration of Competing Interest
Acknowledgements
References
Dunne N, Clements J, Wang J-S. Chapter 8 – Acrylic cements for bone fixation in joint replacement. Joint Replacement Technology, 2nd ed.; 2014.
- Elimination of barium sulphate from acrylic bone cements. Use of two iodine-containing monomers.Biomaterials. 2003; 24: 4071-4080https://doi.org/10.1016/S0142-9612(03)00298-9
Kairn T, Zahrani M, Cassim N, Livingstone AG, Charles PH, Crowe SB. Quasi-simultaneous 3D printing of muscle-, lung- and bone-equivalent media: a proof-of-concept study. Phys Eng Sci Med 2020; in press. https://doi.org/10.1007/s13246-020-00864-5.
- Influence of CT contrast agents on dose calculations in a 3D treatment planning system.Phys Med Biol. 2001; 2001: 2631https://doi.org/10.1088/0031-9155/46/10/308
- Influence of intravenous contrast agent on dose calculations of intensity modulated radiation therapy plans for head and neck cancer.Radiother Oncol. 2006; 81: 158-162https://doi.org/10.1016/j.radonc.2006.09.010
- Use of a megavoltage electronic portal imaging device to identify prosthetic materials.Australas Phys Eng Sci Med. 2015; 38: 93-100https://doi.org/10.1007/s13246-015-0327-8
- Radiological properties of 3D printed materials in kilovoltage and megavoltage photon beams.Phys Med. 2017; 38: 111-118https://doi.org/10.1016/j.ejmp.2017.05.051
- BEAM: a Monte Carlo code to simulate radiotherapy treatment units.Med Phys. 1995; 22: 503-524https://doi.org/10.1118/1.597552
- The EGSnrc Code System: Monte Carlo simulation of electron and photon transport. Technical Report PIRS-701.National Research Council Canada, 2017
- Using narrow beam profiles to quantify focal spot size, for accurate Monte Carlo simulations of SRS/SRT systems.J Phys Conf Ser. 2014; 489012014https://doi.org/10.1088/1742-6596/489/1/012014
- O51 Clinical implementation of an automated Monte Carlo dose verification system.Australas Phys Eng Sci Med. 2018; 41: 282-283
- Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging.PLoS ONE. 2011; 6e26377https://doi.org/10.1371/journal.pone.0026377
Crowe SB, Kairn T, Middlebrook N, Hill B, Christie DRH, Knight RT, Kenny J, Langton CM, Trapp JV. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity-modulated and volumetric-modulated arc radiotherapy. J Med Radiat Sci 2013;60:131–8. https://onlinelibrary.wiley.com/doi/full/10.1002/jmrs.24.
Kairn T, Crowe SB. Retrospective analysis of breast radiotherapy treatment plans: Curating the ‘non‐curated’. J Med Imag Radiat Oncol 2019;63:517–29. https://onlinelibrary.wiley.com/doi/10.1111/1754-9485.12892.
White DR, Booz J, Griffith RV, Spokas JJ, Wilson IJ. ICRU Report 44 Tissue Substitutes in Radiation Dosimetry and Measurement. Journal of the International Commission on Radiation Units and Measurements, 1989;os23:NP. https://doi.org/10.1093/jicru/os23.1.Report44.
- The effect of intravenous contrast on intensity-modulated radiation therapy dose calculations for head and neck cancer.Am J Clin Oncol. 2005; 28: 456-459https://doi.org/10.1097/01.coc.0000170796.89560.02
- Evaluation of MegaVoltage Cone Beam CT image quality with an unmodified Elekta Precise Linac and EPID: a feasibility study.Australas Phys Eng Sci Med. 2014; 37: 291-302https://doi.org/10.1007/s13246-014-0258-9
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy