Abstract
Keywords
1. Introduction
- Andreo P.
- Andreo P.
2. Materials and methods
2.1 Phantom
2.2 RED determination
Vilches-Freixas G. Dual-energy cone-beam CT for proton therapy. Ph.D. thesis; INSA de Lyon; 2017. URL https://www.creatis.insa-lyon.fr/site7/sites/www.creatis.insa-lyon.fr/files/Gloria%20Vilches-Freixas2017a.pdf.
2.3 SPR determinaton
Quiñones CT. Proton Computed Tomography. Ph.D. thesis; INSA de Lyon; 2016. URL https://tel.archives-ouvertes.fr/tel-01694032/document.
2.4 I determination
where S is the stopping power of the medium, the classical electron radius, the mass of an electron, c the speed of light in vacuum, the electron density of the medium, z the charge of the projectile, and with v the velocity of the projectile.
with SPR = S/Sw the stopping power ratio and the stopping power of water, the mean excitation energy of water, which was set to 78 eV in Geant4, and corresponding to an energy of 300 MeV. This latter choice outlines the energy dependence of Eq. 2 which stems from the energy dependence of S propagating to the SPR. It can easily be seen that there is no energy dependence when SPR/RED = 1, i.e., for water. For other tissues, the calculated I will depend on the choice of the energy-dependent β. However, for human tissues, the SPR variations are small in the 80–300 MeV energy range [
2.5 Uncertainty of I
with and the standard deviation of the SPR and the RED, respectively. We obtained
2.6 Quantitative evaluation
ROI | Tissue | RED (unitless) | SPR (unitless) | I (eV) | (eV) | I error | ||||
---|---|---|---|---|---|---|---|---|---|---|
Ref. | Ref. | Ref. | Med ± σ | Eq. 4 | (%) | |||||
![]() | 1 | Adipose | 0.95 | 0.95 ± 0.02 | 0.97 | 0.97 ± 0.02 | 63 | 60 ± 13 | 14 | −5.0 |
2 | Brain | 0.04 | 1.05 ± 0.02 | 1.06 | 0.06 ± 0.02 | 69 | 71 ± 20 | 17 | 3.0 | |
3 | Muscle | 1.04 | 1.04 ± 0.02 | 1.05 | 1.05 ± 0.02 | 69 | 74 ± 14 | 15 | 7.2 | |
4 | Salivary gland | 1.02 | 1.02 ± 0.02 | 1.04 | 1.04 ± 0.02 | 68 | 67 ± 15 | 14 | −1.2 | |
![]() | 1 | Mammary gland | 1.02 | 1.02 ± 0.02 | 1.04 | 1.05 ± 0.02 | 64 | 62 ± 20 | 22 | −3.1 |
2 | Blood | 1.05 | 1.05 ± 0.02 | 1.06 | 1.06 ± 0.02 | 70 | 70 ± 24 | 21 | 0.8 | |
3 | Mammary gland | 1.02 | 1.02 ± 0.02 | 1.04 | 1.04 ± 0.02 | 64 | 65 ± 24 | 21 | 1.6 | |
4 | Compressed lings | 0.38 | 0.38 ± 0.02 | 0.39 | 0.39 ± 0.02 | 70 | 54 ± 46 | 49 | −21.8 | |
5 | Muscle | 1.04 | 1.03 ± 0.04 | 1.05 | 1.04 ± 0.04 | 69 | 65 ± 36 | 37 | −6.9 | |
![]() | 1 | Muscle | 1.04 | 1.04 ± 0.03 | 1.05 | 1.05 ± 0.03 | 69 | 67 ± 29 | 30 | −2.9 |
2 | Urine | 1.03 | 1.03 ± 0.05 | 1.05 | 1.04 ± 0.05 | 70 | 60 ± 37 | 33 | −14.5 | |
3 | Femora spongiosa | 1.04 | 1.03 ± 0.05 | 1.06 | 1.05 ± 0.05 | 67 | 62 ± 39 | 36 | −7.1 | |
4 | Muscle | 1.04 | 1.05 ± 0.05 | 1.05 | 1.06 ± 0.05 | 69 | 78 ± 38 | 47 | −12.3 | |
5 | Adipose | 0.95 | 1.95 ± 0.04 | 1.97 | 0.98 ± 0.04 | 63 | 59 ± 37 | 35 | −6.5 |
3. Results

4. Discussion
- Andreo P.
- Andreo P.
- Ziegler J.F.
- Ziegler M.D.
- Biersack J.P.
Janni JF. Energy loss, range, path length, time-of-flight, straggling, multiple scattering, and nuclear interaction probability. In: two parts. Part 1. For 63 compounds. Part 2. For elements 1 Z 92. At Data Nucl Data Tables 1982;27(2–3), pp. 147–39, doi: https://doi.org/10.1016/0092-640X(82)90004-3.
Vilches-Freixas G. Dual-energy cone-beam CT for proton therapy. Ph.D. thesis; INSA de Lyon; 2017. URL https://www.creatis.insa-lyon.fr/site7/sites/www.creatis.insa-lyon.fr/files/Gloria%20Vilches-Freixas2017a.pdf.
Conflict of interest
Acknowledgements
References
ICRU, ICRU Report 49, Stopping Powers and Ranges for Protons and Alpha Particles. Am Assoc Phys Med; 1993. doi: https://doi.org/10.1118/1.597176.
- The clinical impact of uncertainties in the mean excitation energy of human tissues during proton therapy.Phys Med Biol. 2013; 58: 887-902https://doi.org/10.1088/0031-9155/58/4/887
- On the determination of the mean excitation energy of water.Adv Quantum Chem. 2013; 65: 63-77https://doi.org/10.1016/B978-0-12-396455-7.00003-0
Ritchie R, Hamm R, Turner J, Wright H. The interaction of swift electrons with liquid water. In: Sixth Symp. Microdosim. Brussels, Belgium, May 22–26, 1978. Harwood Academic; 1978, pp. 345–54.
- Electron inelastic-scattering cross sections in liquid water.Radiat Phys Chem. 1999; 53: 1-18https://doi.org/10.1016/S0969-806X(97)00317-4
ICRU, ICRU Report 73, Stopping of ions heavier than helium; vol. 5. 2005. doi: https://doi.org/10.1093/jicru/ndi001.
- Errata and Addenda for ICRU Report 73, Stopping of Ions Heavier than Helium.J ICRU. 2009; 5: 1-10
ICRU, ICRU Report 37, Stopping Powers for Electrons and Positrons. 1984. doi: https://doi.org/10.1093/jicru/ndm020.
- On the clinical spatial resolution achievable with protons and heavier charged particle radiotherapy.Phys Med Biol. 2009; 54https://doi.org/10.1088/0031-9155/54/11/N01
- The composition of body tissues.Br J Radiol. 1986; 59: 1209-1218https://doi.org/10.1259/0007-1285-59-708-1209
- Average soft-tissue and bone models for use in radiation dosimetry.Br J Radiol. 1987; 60: 907-913https://doi.org/10.1259/0007-1285-60-717-907
ICRU, Photon, electron, proton and neutron interaction data for body tissues. ICRU Rep No 46 1992.
- ICRP publication 110. realistic reference phantoms: an ICRP/ICRU joint effort. a report of adult reference computational phantoms.Ann ICRP. 2009; 39: 1-164https://doi.org/10.1016/j.icrp.2009.09.001
ICRU, ICRU Report 44 – Tissue Substitutes in Radiation Dosimetry and Measurement. 1989. doi: https://doi.org/10.1093/jicru/os25.2.Report49.
- GATE: a simulation toolkit for PET and SPECT.Phys Med Biol. 2004; 49: 4543-4561
- Dual-source dual-energy CT with additional tin filtration: Dose and image quality evaluation in phantoms and in-vivo.AJR Am J Roentgenol. 2010; 195: 1164-1174https://doi.org/10.2214/AJR.09.3956.Dual-source
- Optimization of dual-energy CT acquisitions for proton therapy using projection-based decomposition.Med Phys. 2017; 44: 4548-4558https://doi.org/10.1002/mp.12448
- Energy-selective reconstructions in X-ray computerized tomography.Phys Med Biol. 1976; 21: 733-744https://doi.org/10.1088/0031-9155/21/5/002
Vilches-Freixas G. Dual-energy cone-beam CT for proton therapy. Ph.D. thesis; INSA de Lyon; 2017. URL https://www.creatis.insa-lyon.fr/site7/sites/www.creatis.insa-lyon.fr/files/Gloria%20Vilches-Freixas2017a.pdf.
- Filtered backprojection proton CT reconstruction along most likely paths.Med Phys. 2013; 40: 031103-1-031103-9https://doi.org/10.1118/1.4789589
- A maximum likelihood proton path formalism for application in proton computed tomography.Med Phys. 2008; 35: 4849-4856https://doi.org/10.1118/1.2986139
Quiñones CT. Proton Computed Tomography. Ph.D. thesis; INSA de Lyon; 2016. URL https://tel.archives-ouvertes.fr/tel-01694032/document.
- The calibration of CT Hounsfield units for radiotherapy treatment planning.Phys Med Biol. 1996; 41: 111-124
- Monte Carlo Comparison of X-ray and proton CT for range calculations of proton therapy beams.Phys Med Biol. 2015; 60: 7585
- The impact of uncertainties in the CT conversion algorithm when predicting proton beam ranges in patients from dose and PET-activity distributions.Phys Med Biol. 2010; 55: 7557-7571https://doi.org/10.1088/0031-9155/55/24/011
- Technical Note: on the calculation of stopping-power ratio for stoichiometric calibration in proton therapy.Med Phys. 2015; 42: 5252-5257https://doi.org/10.1118/1.4928399
- Inter-comparison of relative stopping power estimation models for proton therapy.Phys Med Biol. 2016; 61: 8085-8104https://doi.org/10.1088/0031-9155/61/22/8085
- Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie.Ann Phys. 1930; 397: 325-400https://doi.org/10.1002/andp.19303970303
- Bremsvermögen von Atomen mit mehreren Elektronen.Zeitschrift für Phys. 1933; 81: 363-376https://doi.org/10.1007/BF01344553
- SRIM - The stopping and range of ions in matter (2010).Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms. 2010; 268: 1818-1823https://doi.org/10.1016/j.nimb.2010.02.091
- Passage of charged particles through matter.American Institute of Physics, McGraw-Hill, New York1972
Janni JF. Energy loss, range, path length, time-of-flight, straggling, multiple scattering, and nuclear interaction probability. In: two parts. Part 1. For 63 compounds. Part 2. For elements 1 Z 92. At Data Nucl Data Tables 1982;27(2–3), pp. 147–39, doi: https://doi.org/10.1016/0092-640X(82)90004-3.
- Review of medical radiography and tomography with proton beams.Reports Prog Phys. 2018; 81: 016701https://doi.org/10.1088/1361-6633/aa8b1d
- Proton radiography and tomography with application to proton therapy.Br J Radiol. 2015; 1053: 20150134
- Pencil beam proton radiography using a multilayer ionization chamber.Phys Med Biol. 2016; 61: 4078-4087https://doi.org/10.1088/0031-9155/61/11/4078
- Range uncertainties in proton therapy and the role of Monte Carlo simulations.Phys Med Biol. 2012; 57: R99-R117https://doi.org/10.1088/0031-9155/57/11/R99
Article info
Publication history
Footnotes
☆Deriving I map from DECT and pCT.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy